半导体三极管
三极管工作状态有四种,放大、饱和、截止、倒置。其中又以放大状态最为复杂,主要用于小信号的放大领域,常用的三极管放大电路形式有:共发射极放大电路,共集电极放大电路,共基极放大电路三种,其中共集电路用于电流放大(功率放大),共基电路用于高频放大,共射电路用于低频放大。
三极管放大电路包含静态参数和动态参数两大类,静态参数又称静态工作点,是保证三极管正常工作的基础,意义是在输入条件为零时,晶体管的基极电流Ib,集电极电流Ic,be极之间的电压Ubc,管压降Uceq。当有输入信号时,晶体管呈现的输入电阻Ri,输出电阻Ro,电压增益Au等参数被称为动态参数。另外还有一类参数被称为放大电路频率特性参数,主要包括放大电路的低频端截止频率,高频端截止频率,通频带,增益平坦度,幅(度)频(率)特性曲线等。
半导体三极管的作用
晶体三极管,是最常用的基本元器件之一,晶体三极管的作用主要是电流放大,它是电子电路的核心元件,大规模集成电路的基本组成部分也就是晶体三极管。
三极管基本机构是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
半导体三极管
刚才说了电流放大是晶体三极管的作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。根据三极管的作用我们分析它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量罢了。三极管有一个重要参数就是电流放大系数β。当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。三极管的作用还有电子开关,配合其它元件还可以构成振荡器,此外三极管还有稳压的作用。
半导体三极管的工作状态
截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极和发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。
根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。
总结,半导体三极管的放大电路及作用都有很多的特点,况且通过本文的讲解,相信大家对于半导体三极管的放大电路及作用的知识都有所掌握,同时也希望本文能给大家工作上一定的帮助。
浏览过本文<半导体三极管的放大电路及作用>的人也浏览了:
半导体三极管技术参数分析
http://www.cntronics.com/gptech-art/80018633
半导体三极管及其应用
http://baike.cntronics.com/tech/413
半导体三极管
http://club.cntronics.com/blog-209873-37453.html