以太网GigEpack

先进的千兆位以太网,可完全接入微芯片的新产品组合GigEpack是一个完整的59千兆以太网芯片组合,具有高级功能。

嵌入式调制解调器

支持直接在板上运行的定制MicroPython应用,开发人员将其集成到现有设计中,即时实现蜂窝集成无需进行全面的重新设计。

AVX柱式超级电容器的解决方案

巧妙地融合了极高电容与极低ESR,具有出色的脉冲功率处理特性。 该电容器既可单独使用,也可与一次或二次电池结合使用。

分享到:
0分

发动机冷测试中的点火测试技术分析与应用

发动机的点火测试是发动机出厂检测的重要环节,为达到保证发动机质量的目的,针对发动机装配过程中在线检测的需要提出了一种快速检测的冷测试技术……  ---查看全文 >>

关键字: 

发动机冷测试中的点火测试技术分析与应用

发动机的点火测试是发动机出厂检测的重要环节,为达到保证发动机质量的目的,针对发动机装配过程中在线检测的需要提出了一种快速检测的冷测试技术。

发动机点火原理

图1发动机点火原理

发动机的点火测试是发动机出厂检测的重要环节,为达到保证发动机质量的目的,针对发动机装配过程中在线检测的需要提出了一种快速检测的冷测试技术。

发动机的点火测试是发动机出厂检测的重要环节,传统的发动机测试都是基于发动机热试试验,因此无法进行装配线的在线快速检测,而且会产生大量废气和噪音,对环境造成污染。

本测试方法由于是伺服电机拖动发动机稳速运转,在测试过程中发动机本身不作功,发动机仍然是按照四个冲程运行,在这四个过程中,由于没有燃油的注入因而不存在燃烧,但其点火过程是始终存在的。通过测试台架上靠近4个点火线圈的磁场传感器来感应点火过程中磁场的变化并记录感应的波形,因而可以实现发动机点火快速在线检测的功能。相对热试而言发动机冷测试技术具有明显的优势,目前已广泛应用于通用、大众等各大汽车制造厂家。
 

 点火线圈结构

图2点火线圈结构

点火测试原理

目前大多数汽车制造厂家都已采用笔式点火线圈,其原理如图1所示。图1是一台采用笔式点火线圈八缸发动机的点火原理图,其点火正时信号是通过曲轴发信轮和凸轮轴发信轮来给定,PCM通过这些信号来给出确定的点火时序,通过点火线圈增压依次分配到各缸的火花塞中使其击穿,从而达到使油气混合物点燃的目的。由于冷测试过程没有燃油的注入,不存在燃烧,但是其火花塞已被击穿。在整个点火过程中火花塞的点火线圈起到了至关重要的作用,其结构如图2所示,它是一个类似于变压器的结构,有初级和次级两个绕组,通过给初级绕组通断电来实现次级绕组感应出瞬间高压从而击穿火花塞。

在点火测试中正是利用了点火线圈初级绕组和次级绕组相互感应这一特性进行测试。对直列四缸形式的发动机而言在测试台架中存在4个独立的磁感应线圈,通过他们来感应点火过程中线圈中初级线圈的电压变化情况,通过观察感应到的波形来判断发动机点火系统的好坏,可以快速精确简单地判定出潜在的问题。

发动机点火正时信号
图3发动机点火正时信号(EST)

发动机点火冷测试的整个过程非常简单,发动机的ECU根据曲轴位置传感器所提供的信号来产生EST(electronsparktiming)信号,这是一个类似于脉冲序列的信号,如图3所示,信号的上升沿和下降沿的时间差就是其供给点火线圈初级绕组的充电时间(dwelltime),在整车中充电时间通常都是固定,但在发动机冷试点火测试时这个时间是可调节的,EST信号一般是幅值固定的电压信号。在冷测试台架中会有一路电压可调节的电源专门用来给点火线圈的初级绕组充电,其充电时间可由EST信号来控制,在整车中由EST信号所确定的充电时间和供给点火线圈初级线圈的充电电压通常都是固定的,而在发动机冷测试台架中这两个参数则是可调节的,在实际的测试过程中通过对这两个参数的调整而实现点火线圈测试的目的。

冷试点火测试波形分析

在实际的生产过程中,为了及早发现发动机点火系统更多的缺陷,往往采用高压点火和低压点火两种策略,其本质就是调节EST信号的充电时间和初级线圈供电电压,在高压点火时往往采用相对较高的EST电压幅值和较长的充电时间,而低压点火时往往采用较低的电压幅值和较短的充电时间,通过这两种点火方式可以更好地检测出发动机点火系统中潜在的问题。

低压点火测试波形

图4低压点火测试波形

1.低压点火测试波形分析

低压点火测试是利用一个低于常规充电电压值来进行的检测,当电压值过低时火花塞不能击穿,低压测试的方法即是寻找一个合适的初级线圈充电电压使得火花塞处于一种临界击穿的状态,此时的火花塞并没有击穿,但当充电电压再略高一点时就会导致击穿。图4是一个典型的低压点火测试波形,在这个测试过程中,EST电压信号的幅值较低,如图5中低压部分波形所示,由于未击穿火花塞其波形在第一次峰值后就进入衰减振荡的环节,直到点火线圈中能量耗尽。低压点火可以用来检测火花塞间隙,当火花塞间隙较小时,相比正常的间隙其更容易被击穿,低压点火所积蓄的能量就可以击穿这个间隙相对较小的火花塞,因此其点火波形也将明显不同于正常的火花塞间隙。

2.高压点火测试波形分析

当初级线圈充电电压信号电压的幅值相对较高时,如图5中高压部分所示,其击穿电压的幅值、持续时间都会相应的变高。当充电电压调整一个较高值时其点火波形如图6所示。图6是一个典型的高压点火测试波形,在这个测试过程中,初级线圈充电电压较高,由于在整车中5V的电压幅值已可以保证火花塞击穿,因此在只要大于5V电压情况下点火线路中的火花塞已被完全击穿,由于其电压幅值较高,从其波形上来看其第一次的峰值也相对较高,此后还有一段较长的持续时间并在结束时会产生一个较小的峰值脉冲直到线圈中的能量耗尽。

本文链接:http://baike.cntronics.com/design/451

‘发动机冷测试中的点火测试技术分析与应用’相关内容

  • 让数据告诉你如何选择汽车爆震传感器

        汽车爆震传感器主要用途就是为了通过监控发动机的振动,从而提高发动机的性能和发动机的效率。但是什么样的爆震传感器才能实现最佳性能和效率?本文从数据分析中得出如何才能选择最佳的爆震传感器。通过爆震传感器的信号提取情况来验证发动机的性能。

  • 汽车发动机亮点设计方法,只需灵活运用实验设计

        发动机是汽车的心脏,虽然发动机的基本原理没有改变,但积极进取的汽车厂商们常常喜欢把发动机的性能作为竞争亮点,富于创新的设计大师们也不断地将最新科技融入到发动机中,把发动机变成一个日益复杂的机电一体化产品。本文就讲解如何灵活运用实验设计的方法进行汽车发动机研发。

分享到: 0
推荐给同仁
0
0
查看全部评论
有人回复时发邮件通知我

关于我们 | About Us | 联系我们 | 隐私政策 | 版权申明 | 投稿信箱

反馈建议:editor@eecnt.com     客服电话:0755-26727371

Copyright © WWW.CNTRONICS.COM  All Rights Reserved 深圳市中电网络技术有限公司 版权所有   粤ICP备10202284号-1 未经书面许可,不得转载本网站内容。