目前,铁电池负极材料在当代的应用可谓是越来越广泛,铁电池负极材料是值得我们好好学习的,现在我们就深入了解铁电池负极材料。
负极材料
在高铁电池中,可作为电池负极的材料也很多,包括锌、铝、铁、镉和镁等。
锌
根据锌的金属特性,其平衡电位较负,电化当量较高,因而比能量和比功率都比较高。而且锌具有较好的放电性能,价格便宜,来源丰富。在化学电源中得到广泛的应用。
在碱性溶液中,锌电极反应除了形成锌酸盐外,最终产物主要为固相的氧化锌:
Zn + 2OH-→Zn(OH)2+ 2e
Zn(OH)2 + 2OH-→Zn(OH)42-
Zn(OH)42-→ZnO + H2O + 2OH-
总反应为:Zn + 2OH- →ZnO + H2O + 2e
对于锌负极,在应用于高铁电池中有着一定的优势,因为锌电极作为负极材料在碱性溶液中有着较成熟的理论和工艺积累。研究Zn-MFeO4电池时,在缓蚀剂、导电剂、隔膜、集流体以及制造工艺等方面有许多可借鉴的技术。
铝
铝作为高铁电池的负极,会遇到两个问题:一是铝在碱性溶液中的自腐蚀问题,在强碱性溶液中,铝的溶解速度很快,同时产生大量的氢气,对高铁酸盐来说,穿过隔膜的氢气会加速高铁酸盐的分解;二是铝在阳极过程中表面产生沉积物会阻止电极的反应,使阳极过电位升高,降低了阳极的电压效率。可以通过合金化和电解液添加剂这两个途径来克服上述问题。通过添加一些元素形成二元或多元铝合金,如添加Ga、Sn、In等金属可以改变铝表面沉积物的组成结构,提高铝的阳极电位,同时增强铝抗自腐蚀的能力。在电解液中添加其它物质也可以改善电极反应产物的晶型, 从而起到抑制腐蚀和提高阳极电位的作用。如添加In(OH)3可以有效减小腐蚀,而添加Ga2O3、Na2SnO3或柠檬酸钠等都可以对活化电极起到有效的作用。
铁
铁作为电池负极在碱性溶液中的电极反应比较复杂,铁失去电子形成稳定的+2价和+3价氢氧化物,即,
Fe + nOH- → Fe(OH)n2-n +2e
Fe(OH)n2-n →Fe(OH)2+ (n-2)OH- E°= -0.877V (vs. SHE)
Fe(OH)2 + OH- →Fe(OH)3+ e E°= -0.56V (vs. SHE)
然后,2Fe(OH)3 + Fe(OH)2 → Fe3O4 + 4H2O
在碱性溶液中,铁最初形成+2价产物,二价铁与电解液形成Fe(OH)n2-n 络合物,在继续放电时生成+3价铁,而且由+3价铁与+2价铁相互作用形成Fe3O4。
铁与高铁酸盐组成电池时,电池的开路电压为1.5V左右,随着高铁酸盐的类型而有少许变化。由铁电极的放电曲线可知,铁负极在放电时有两个放电平台,第一个放电平台对应的是Fe向Fe(OH)2的转化;第二个放电平台对应的是Fe(OH)2/Fe(OH)3反应,第一个放电平台到第二个放电平台电压会降低0.3V左右。实际上,第二个平台的放电容易受到很多因素的影响。如第二次放电产物和高铁酸盐的反应产物 Fe(OH)3会与Fe(OH)2形成Fe3O4,影响了Fe(OH)2的放电。铁负极与高铁酸钾组成的单体电池在第一放电平台的理论容量应为285.3mAh/g。
镉
镉与高铁酸盐组成电池时,单体电池开路电压的理论值应在1.4V左右。镉的电化当量为477mAh/g,与K2FeO4组成电池的理论容量为219mAh/g。
综上所述,本文已为讲解铁电池负极材料,相信大家对铁电池负极材料的认识越来越深入,希望本文能对各位读者有比较大的参考价值。
浏览过本文<铁电池负极材料>的人也浏览了
“耐时”鏖战“劲量”,高能锂铁电池路在何方?
http://www.cntronics.com/gptech-art/80002817
解密电池界四大续航手段,真干货!
http://ep.cntronics.com/market/1327
Maxim锂离子电池监测器现身于日产混动版探路者
http://ep.cntronics.com/voice/923
特别推荐
- 随时随地享受大屏幕游戏:让便携式 4K 超高清 240Hz 游戏投影仪成为现实
- 在发送信号链设计中使用差分转单端射频放大器的优势
- 第9讲:SiC的加工工艺(1)离子注入
- 移远通信再推两款新型4G、Wi-Fi、GNSS三合一组合天线
- Bourns 推出全新双绕组系列,扩展屏蔽功率电感产品组合
- 贸泽开售AMD Versal AI Edge VEK280评估套件
- 安森美Hyperlux图像传感器将用于斯巴鲁新一代集成AI的EyeSight系统
技术文章更多>>
- 在智能照明产品设计中实施Matter协议的经验教训
- 艾睿电子助力SAVART Motors扩大其在印尼的电动车制造规模
- 隔离飞电容多电平变换器的硬件设计
- 【“源”察秋毫系列】多次循环双脉冲测试应用助力功率器件研究及性能评估
- 高信噪比MEMS麦克风驱动人工智能交互
技术白皮书下载更多>>
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
热门搜索