你的位置:首页 > 知识课堂 > 正文

电磁学现象

发布时间:2015-07-13

现在科技迅速在发展当中,本文我们为大家深入讲解电磁学现象的应用场合和电磁学现象与目前国内其他产品相比的优势,希望对大家有所帮助。

仪器应用

采用磁场感应电流(又称为涡流)的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。

磁铁能吸引铝吗?不会。但为什么用线把一块马蹄形磁铁悬挂在铝盘上方,若磁铁悬转了,铝盘会随之同向旋转呢?能否利用这种现象设计汽车速度计、电度表呢?

上述现象的产生是因为把磁铁旋转时,穿过铝盘的磁通量发生了改变,铝盘中产生了感应电流,这种电流在铝盘中自成闭合回路形成涡流。又因为铝盘的电阻很小,所以涡流很强。由楞次定律“感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。”另一种表述可理解为“感应电流的效果总是要反抗产生感应电流的原因。”这里“产生感应电流的原因”可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的变形。“感应电流的效果”既可以是感应电流所产生的磁场,也可以是因感应电流出现而引起的机械作用。而本现象正是铝盘的转动(即是感应电流的效果)来反抗磁铁的转动(即是产生感应电流的原因)。所以铝盘会随磁铁的转动而转动。

速度计、电度表等电学测量仪表,要求指针的摆动很快停下来,以便迅速读出读数。电表的线圈要绕在铝框上,铝框就是起这个作用的。当被测电流通过线圈时,线圈带动指针和铝框一起转动,铝框在磁场中转动时产生涡流,磁场对这个涡流的作用力阻碍它们的摆动,于是使指针很快的稳定指到读数位置上。

发展过程与研究现状

[摘要] 阿或Ag合金)中进行加工和热处理的方法,制备Bi系长线(带)材取得了成功,1994年美国超导公司率先制备出长度达1000米、 Jc达1×104A/cm2(77K,0T)的BSCCO/Ag带材。1996年,美国超导公司(ASC)和日本住友公司制备的1200米带材的Jc值均超过1.2×104A/cm2 (77K,0T),并且能够稳定生产。根据目前的研究结果,人们认为通过进一步改善工艺参数,提高带材的密度和晶粒的结构、改善晶粒间的连接性以及引入有效的磁通钉扎中心,Bi系带材的Jc值将还会有较大幅度的提高。另外在通过多芯化和基体材料的合金化来改善Bi系线(带)材的机械强度方面,也已取得了明显进展。

2.柔性金属基YBCO带材进展

YBCO超导体在液氮温区有较强的本征钉扎特性,但它的晶粒很难通过常规的加工技术来实现取向,所以用PIT法及在普通金属基带上涂层后热处理的方 法虽然能够制备出长线(带)材,但其Jc值均小于103A/cm2(77K,0T),并且,随磁场的增加迅速下降。受在单晶基体上通过外延生长制备高 JcYBCO薄膜的启发,最近人们发展了“离子束辅助沉积”(IBAD,美国LANL)和“轧制辅助双轴织构”(RABiTS,美国ORNL)这两种柔性基带,并在这种基带上生长YBCO膜取得了成功,获得了高Jc的带材。这两种基带都是在柔性金属带(如:Ag,Ni等)上沉积一层取向生长的钇稳定的氧化锆(YSZ),由于YSZ与YBCO的晶格点阵非常接近,并且具有良好的化学稳定性,它一方面可以诱导YBCO晶体取向生长,另一方面又作为阻隔层防止 YBCO与金属基带反应。目前利用脉冲激光沉积(PLD)和MOCVD方法在IBAD及RABiTS带上制备的YBCO超导体在65K强磁场中的Jc值均 已超过低温实用超导体NbTi和Nb3Sn在4.2K的Jc值。如:美国LANL制备的IBAD样品Jc最高达到106A/cm2(75K,0T), ORNL的RABiTS带的Jc也已达到7×105A/cm2(77K,0T)、3×105A/cm2(77K,1T)。虽然从目前的研究现状来看,制备 长带还存在着一定的技术难度,但这种方法所带来的高Jc性能给高温超导体在77K温区实现强电应用展示了美好的前景,人们已把它称为继PIT法BSCCO 带后的第二代高温超导带材,并且投入较大的人力和物力进行开发研究。

要想得到性能优良的高温超导器件就必须有质量很好的薄膜,但由于高温超导体是由多种元素(至少四种)组成的化合物,而且高温超导体往往还有几个不同的相,此外,高温超导体具有高度的各向异性,这些因素使制备高质量高Tc超导薄膜具有相当大的困难,尽管如此,通过各国科学家十年来坚持不懈的努力,已取得了很大的进展,高质量的外延YBCO薄膜的Tc在90K以上,零磁场下77K时,临界电流密度Jc已超过1×106A/cm2,工艺已基本成熟,并有了一批高温超导薄膜电子器件问世。

高温超导材料的应用

超导材料具有的高载流能力和低能耗特性,使其可广泛用于能源、交通、医疗、重大科技工程和现代国防等领域。目前已在两方面形成了较大规模的应用。一是重大科技工程方面,主要是高能物理研究所需的大型粒子加速器,如正在欧洲建造的周长为27km的大型质子碰撞机LHC,以及热核聚变反应装置,如ITER和LHD等;二是在医疗诊断方面正在广泛应用的核磁共振成像系统MRI和具有较高科学与应用价值的核磁共振谱仪NMR。

根据目前高温超导线材的发展状况,人们把已开始实现商品化的铋系线(带)材称为第一代导体,而把将来可能实现商品化生产的钇钡铜氧涂层导体称为第二代导体。提高高温超导材料的性能和降低成本将是今后的重要课题。从应用角度而言,超导线材的成本是以每千安米的价格来计算的。所以除了降低原材料和加工成本外,提高线材的载流能力将会使成本大幅度降低。多数高温超导应用项目需要线材的性能-价格在10美元/kA.m左右,因这一价格相当于铜导体实际应用的性能价格。在1999年,铋-2223带材的价格已由1998年以前的1000美元/kA.m降到300美元,预计在5年内成本可降到50美元。

令人振奋的是,2000年12月新型高温超导体二硼化镁(属金属间化合物,Tc~40k)的发现,又掀起了新一轮的高温超导热,现在全世界许多超导研究组都在日以继夜地研究开发,我国几个主要超导材料研究单位都已研制出单相的二硼化镁超导体,正在对其特性进行深入的研究,线材的研究开发也在同步进行,并已取得初步成果。与氧化物高温超导体相比较,二硼化镁具有结构简单,稳定性好,易于生产等特点,更重要的是它具有很高的临界电流密度(Jc>105A/cm2),其性能价格比被认为优于铌钛超导体,能够用致冷机在20k实现应用,

无需液氮。预计二硼化镁超导体很快达到实用化水平,预示着又一个超导材料的崭新时代可能到来。

综上所述,本文已为讲解电磁学现象,相信大家对电磁学现象的认识越来越深入,希望本文能对各位读者有比较大的参考价值。

浏览过本文<电磁学现象>的人也浏览了
要采购薄膜么,点这里了解一下价格!
特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭