什么是超导材料?超导材料是具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。
超导体
特性
1.零电阻
超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。
2. 抗磁性
超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。
3.同位素效应
超导体的临界温度Tc与其同位素质量M有关。M越大,Tc越低,这称为同位素效应。例如,原子量为199.55的汞同位素,它的Tc是4.18开,而原子量为203.4的汞同位素,Tc为4.146开。
相关概念
1. 临界温度
外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。
2. 临界磁场
使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。
3.临界电流和临界电流密度
通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。
超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。
超导体
超导材料有什么优点?
超导技术的主体是超导材料。简而言之,超导材料就是没有电阻、或电阻极小的导电材料。超导材料最独特的性能是电能在输送过程中几乎不会损失:近年来,随看材料科学的发展,超导材料的性能不断优化,实现超导的临界温度越来越高。20世纪末,科学家合成了在室温下具有超导性能的复合材料,室温超导材料的研制成功使超导的实际应用成为可能。
经过本文的具体讲解后,大家是否更加了解超导材料了呢?希望大家一起好好学习,对你们的工作和生活有所帮助,投身于社会发展的实践中去吧!为美好的未来而努力发展科技
浏览过本文<超导材料>的人还浏览了:
高温超导体
http://baike.cntronics.com/abc/1628
什么是导体?
http://baike.cntronics.com/abc/4436
半导体材料有哪些
http://baike.cntronics.com/abc/3581