你的位置:首页 > 知识课堂 > 正文

什么是生物芯片

发布时间:2013-04-18

大家应该对生物芯片已经不再陌生,今天我们就来学习生物芯片的内容,本文主要讲解的是生物芯片的介绍、生物芯片的分类、生物芯片的主要特点和生物芯片的制备以及应用领域内容。

生物芯片
一、生物芯片的介绍

生物芯片,又称DNA芯片或基因芯片,它们是DNA杂交探针技术与半导体工业技术相结合的结晶。该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。简单说,生物芯片就是在一块玻璃片、硅片、尼龙膜等材料上放上生物样品,然后由一种仪器收集信号,用计算机分析数据结果。人们可能很容易把生物芯片与电子芯片联系起来,其实,生物芯片和电子芯片有着千丝万缕的联系,但是完全不同的两种东西。生物芯片并不等同于电子芯片,只是借用概念,它的原名叫“核酸微阵列”,因为它上面的反应是在交叉的纵列中所发生。

二、生物芯片的分类


根据用途分类
(1)生物电子芯片:用于生物计算机等生物电子产品的制造。
(2)生物分析芯片:用于各种生物大分子、细胞、组织的操作以及生物化学反应的检测。
前一类目前在技术和应用上很不成熟,一般情况下所指的生物芯片主要为生物分析芯片。
根据作用方式分类
(1)主动式芯片:指把生物实验中的样本处理纯化、反应标记及检测等多个实验步骤集成,通过一步反应就可主动完成。其特点是快速、操作简单,因此有人又将它称为功能生物芯片。主要包括微流体芯片(microftuidic chip)和缩微芯片实验室(lab on chip,也叫“芯片实验室”,是生物芯片技术的最高境界)
(2)被动式芯片:即各种微阵列芯片,是指把生物实验中的多个实验集成,但操作步骤不变。其特点是高度的并行性,目前的大部分芯片属于此类。由于这类芯片主要是获得大量的生物大分子信息,最终通过生物信息学进行数据挖掘分析,因此这类芯片又称为信息生物芯片。包括基因芯片、蛋白芯片、细胞芯片和组织芯片。
根据固定在载体上的物质成分分类
(1)基因芯片(gene chip):又称DNA芯片(DNA chip)或DNA微阵列(DNA microarray),是将cDNA或寡核苷酸按微阵列方式固定在微型载体上制成。
(2)蛋白质芯片(protein chip或protein microarray):是将蛋白质或抗原等一些非核酸生命物质按微阵列方式固定在微型载体上获得。
(3)细胞芯片(cell chip):是将细胞按照特定的方式固定在载体上,用来检测细胞间相互影响或相互作用。
(4)组织芯片(tissue chip):是将组织切片等按照特定的方式固定在载体上,用来进行免疫组织化学等组织内成分差异研究。
(5)其他:如芯片实验室(Lab on chip),用于生命物质的分离、检测的微型化芯片。现在,已经有不少的研究人员试图将整个生化检测分析过程缩微到芯片上,形成所谓的“芯片实验室”(Lab on chip)。芯片实验室是生物芯片技术发展的最终目标。它将样品的制备、生化反应到检测分析的整个过程集约化形成微型分析系统。由加热器、微泵、微阀、微流量控制器、微电极、电子化学和电子发光探测器等组成的芯片实验室已经问世,并出现了将生化反应、样品制备、检测和分析等部分集成的芯片)。“芯片实验室”可以完成诸如样品制备、试剂输送、生化反应、结果检测、信息处理和传递等一系列复杂工作。这些微型集成化分析系统携带方便,可用于紧急场合、野外操作甚至放在航天器上。 例如可以将样品的制备和PCR扩增反应同时完成于一块小小的芯片之上。再如Gene Logic公司设计制造的生物芯片可以从待检样品中分离出DNA或RNA,并对其进行荧光标记,然后当样品流过固定于栅栏状微通道内的寡核苷酸探针时便可捕获与之互补的靶核酸序列。应用其自己开发的检测设备即可实现对杂交结果的检测与分析。这种芯片由于寡核苷酸探针具有较大的吸附表面积,所以可以灵敏地检测到稀有基因的变化。同时,由于该芯片设计的微通道具有浓缩和富集作用,所以可以加速杂交反应,缩短测试时间,从而降低了测试成本。

三、生物芯片的主要特点

高通量:提高实验进程,利于显示图谱的快速对照和阅读。
微型化:减少试剂用量和反应液体积,提高样品浓度和反应速度。
自动化:减低成本和保证质量。

四、生物芯片的制备

载体材料及要求:作为载体必须是固体片状或者膜、表面带有活性基因,以便于连接并有效固定各种生物分子。目前制备芯片的固相材料有玻片、硅片、金属片、尼龙膜等。目前较为常用的支持材料是玻片,因为玻片适合多种合成方法,而且在制备芯片前对玻片的预处理也相对简单易行。
载体种类:玻璃片、PVDF膜、聚丙烯酰氨凝胶、聚苯乙烯微珠、磁性微珠。
生物样品的制备:分离纯化、圹增、获取其中的蛋白质或DNA、RNA并用荧光标记, 才能与芯片进行反应。 用DNA芯片做表达谱研究时,通常是将样品先抽提mRNA,然后反转录成cDNA。同时掺入带荧光标记的dCTP或dUTP。
芯片制备方法:包括原位合成和预合成后点样。
原位合成:适用于寡核苷酸,通过光引导蚀刻技术。已有P53、P450,BRCAI/BRCA2 等基因突变的基因芯片。
预合成后点样:是将提取或合成好的多肽、蛋白、寡核苷酸、cDNA、基因组DAN等通过特定的高速点样机器人直接点在芯片上。该技术优点在于相对简易低廉,被国内外广泛使用。
接触式点样:是指打印针从多孔板取出样品后直接打印在芯片上。打印时针头与芯片接触。优点是探针密度高,通常一平方厘米可打印2500个探针。 缺点是定量准确性及重现性不太好。
非接触式点样:针头与芯片保持一定距离。优点是定量准确重现性好,缺点是喷印的斑点大,密度低。通常一平方厘米只有400点。但是日本佳能公司 能把喷印点直径大小由150-100μm降到30-25μm。可将哺乳动物整个基因组DNA点阵于一张芯片上成为可能。

生物芯片

五、生物芯片的应用领域

最大用途在于疾病检测
基因表达水平的检测:用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。
基因诊断:从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymetrix公司,把p53基因全长序列和已知突变的探针集成在芯片上,制成p53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。
药物筛选:利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。
个体化医疗:临床上,同样药物的剂量对病人甲有效可能对病人乙不起作用,而对病人丙则可能有副作用。在药物疗效与副作用方面,病人的反应差异很大。这主要是由于病人遗传学上存在差异(单核苷酸多态性,SNP),导致对药物产生不同的反应。如果利用基因芯片技术对患者先进行诊断,再开处方,就可对病人实施个体优化治疗。另一方面,在治疗中,很多同种疾病的具体病因是因人而异的,用药也应因人而异。例如乙肝有较多亚型,HBV基因的多个位点如S、P及C基因区易发生变异。若用乙肝病毒基因多态性检测芯片每隔一段时间就检测一次,这对指导用药防止乙肝病毒耐药性很有意义。

以上是是生物芯片的介绍、生物芯片的分类、生物芯片的主要特点和生物芯片的制备以及应用领域内容,这些都是生物芯片的基本内容,希望能对广大工程师有比较大的帮助和借鉴作用。

浏览过《什么是生物芯片》的人也浏览了:

看似平常,却不可或缺的片状独石陶瓷电容器
http://www.cntronics.com/couple-art/80019647

Sic BJT:史上最高效率的1200V功率装换开关
http://www.cntronics.com/power-art/80020702

突破传统的IGBT系统电路保护设计
http://www.cntronics.com/cp-art/80020604
要采购探针么,点这里了解一下价格!
特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭