什么是寄存器边际效应?
发布时间:2013-03-08
今天我们就来学习什么是寄存器边际效应?通俗的解释是:我们边际效应向往某事物时,情绪投入越多,第一次接触到此事物时情感体验也越为强烈,但是,第二次接触时,会淡一些,第三次,会更淡……以此发展,我们接触该事物的次数越多,我们的情感体验也越为淡漠,一步步趋向乏味。这效应,在经济学和社会学中同样有效,在经济学中叫“边际效益递减率”,在社会学中叫“剥夺与满足命题”,是由霍曼斯提出来的,用标准的学术语言说就是:“某人在近期内重复获得相同报酬的次数越多,那么,这一报酬的追加部分对他的价值就越小。这就是边际效应,但今天我们讲述的是其中一种,就是寄存器边际效应?
什么是寄存器边际效应?
寄存器边际效应一
sideeffect(译为边际效应或副作用):是指读取某个地址时可能导致该地址内容发生变化,比如,有些设备的中断状态寄存器只要一读取,便自动清零。I/O 寄存器的操作具有sideeffect,因此,对其操作不能使用cpu缓存。
Linux内核中定义了很多宏,对硬件端口和寄存器进行操作,从网上搜集了一些宏定义的信息:
1. __REG简单的说就是获得后面所示物理地址映射后的虚拟地址,例如:
#define GPLR0__REG(0x40E00000) /* GPIO Pin-Level Register GPIO<31:0> */
#define GPLR1__REG(0x40E00004) /* GPIO Pin-Level Register GPIO<63:32> */
#define GPLR2__REG(0x40E00008) /* GPIO Pin-Level Register GPIO<80:64> */
pxa处理器内部寄存器的物理地址和内核空间的虚拟地址对应关系如下:
Intel PXA internal I/O mappings:* 0x40000000 - 0x41ffffff <--> 0xf8000000 - 0xf9ffffff
* 0x44000000 - 0x45ffffff <--> 0xfa000000 - 0xfbffffff
* 0x48000000 - 0x49ffffff <--> 0xfc000000 - 0xfdffffff
2. #define GPLR(x)__REG2(0x40E00000,((x) & 0x60) >> 3).
还有一个转换的句子#define GPIO_bit(x) (1 << ((x) & 0x1f))
GPIO共有80个,所以32bit的寄存器只好每组做3个. GPIO_BIT就是1左移x位(并且不要超过32);而GPLR(X)则是根据x的数值(这个是GPIO号,如16,37,72)得到3个GPLR中属于该GPIO的GPLR的起始地址,(__REG2就是获得两个地址的和).这样子可以通过下面的赋值方法:
GPSR(GPIO48_nPOE) = GPIO_bit(GPIO48_nPOE) | GPIO_bit(GPIO49_nPWE);来设置GPIO48所在GPSR的2个位.这么一大堆,是为了用到GPIO号定义好的宏.简单的GPSR3=XXXX|XXXX也是可以的.
3. side effect(译为边际效应或副作用):是指读取某个地址时可能导致该地址内容发生变化,比如,有些设备的中断状态寄存器只要一读取,便自动清零。I/O寄存器的操作具有side effect,因此,对其操作不能使用cpu缓存。
寄存器边际效应二
I/O端口与实际外部设备相关联,通过访问I/O端口控制外部设备,“边际效应”是指控制设备(读取或写入)生效,访问I/O 口的主要目的就是边际效应,不像访问普通的内存,只是在一个位置存储或读取一个数值,没有别的含义了。我是基于arm平台理解的,在《linux设备驱动程序》第二版中的说法是“副作用”,不是“边际效应”。
寄存器边际效应三
访问I/O寄存器时,不仅仅会像访问普通内存一样影响存储单元的值,更重要的是它可能改变CPU的I/O端口电平、输出时序或CPU对I /O端口电平的反应等等,从而实现CPU的控制功能。CPU在电路中的意义就是实现其sideeffect。
以上就是我们学习的文章寄存器边际效应?有时也称为边际贡献,是指消费者在逐次增加一个单位消费品的时候,带来的单位效用是逐渐递减的。希望这篇文章会对读者有所帮助 谢谢!
特别推荐
- 增强视觉传感器功能:3D图像拼接算法帮助扩大视场
- PNP 晶体管:特性和应用
- 使用IO-Link收发器管理数据链路如何简化微控制器选择
- 用好 DMA控制器这两种模式 MCU效率大大提高!
- 深入分析带耦合电感多相降压转换器的电压纹波问题
- Honda(本田)与瑞萨签署协议,共同开发用于软件定义汽车的高性能SoC
- 第13讲:超小型全SiC DIPIPM
技术文章更多>>
- 用第三代 SiC MOSFET设计电源性能和能效表现惊人!
- 如何防止掉电状况下的系统出错?
- 贸泽与TE Connectivity 和Microchip Technology联手推出聚焦汽车Zonal架构的电子书
- PCI Express Gen5:自动化多通道测试
- 如何通过配置控制器优化CAN总线系统性能
技术白皮书下载更多>>
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
热门搜索
线绕电位器
线绕电阻
线束
限位开关
陷波器
相变存储器
消弧线圈
肖特基二极管
心率监测仪
欣达旺
新唐科技
信号发生器
信号继电器
行程开关
修复设备
蓄电池
旋转开关
血压计
血氧仪
压电蜂鸣器
压接连接器
压控振荡器
压力传感器
压力开关
压敏电阻
扬声器
遥控开关
医疗电子
医用成像
移动电源