你的位置:首页 > 知识课堂 > 正文

卡尔曼滤波

发布时间:2012-12-26

卡尔曼滤波

卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。

尔曼滤波是一种递归的估计,即只要获知上一时刻状态的估计值以及当前状态的观测值就可以计算出当前状态的估计值,因此不需要记录观测或者估计的历史信息。卡尔曼滤波器与大多数滤波器不同之处,在于它是一种纯粹的时域滤波器,它不需要像低通滤波器等频域滤波器那样,需要在频域设计再转换到时域实现。

卡尔曼滤波器的状态由以下两个变量表示:

卡尔曼滤波在时刻k 的状态的估计;

卡尔曼滤波误差相关矩阵,度量估计值的精确程度。

卡尔曼滤波器的操作包括两个阶段:预测与更新。在预测阶段,滤波器使用上一状态的估计,做出对当前状态的估计。在更新阶段,滤波器利用对当前状态的观测值优化在预测阶段获得的预测值,以获得一个更精确的新估计值。

卡尔曼滤波的应用

比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置,速度,加速度的测量值往往在任何时候都有噪声.卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑).

  扩展卡尔曼滤波(EKF

  EXTEND KALMAN FILTER

  扩展卡尔曼滤波器

是由kalman filter考虑时间非线性的动态系统,常应用于目标跟踪系统。

卡尔曼滤波特点

 卡尔曼滤波是解决状态空间模型估计与预测的有力工具之一,它不需存储历史数据,且可以同过计算机程序到达对状态空间模型的优化拟合。

要采购滤波器么,点这里了解一下价格!
特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭