你的位置:首页 > 知识课堂 > 正文

核磁共振是什么?

发布时间:2012-11-28

核磁共振是什么?

在生活中,或许我们对于核共振这个名词不陌生,核磁共振就是核共振。核磁共振成像(MRI)是利用收集磁共振现象所产生的信号而重建图像的成像技术,因此,也称自旋体层成像,核磁共振CTMRI可以使CT显示不出来的病变显影,是医学影像领域中的又一重大发展。核磁共振是80年代初才应用于临床的影像诊断新技术。

核磁共振 - 医学上的核磁共振

核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
    MR
也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。

核磁共振原理

原子核的自旋

  核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可 以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,如下表。

 核磁共振

I值为零的原子核可以看做是一种非自旋的球体,I1/2的原子核可以看做是一种电荷分 布均匀的自旋球体,1H13C15N19F31PI均为1/2,它们的原子核皆为电荷分布均匀的自旋 球体。I大于1/2的原子核可以看做是一种电荷分布不均匀的自旋椭球体。[1]

核磁共振现象

  原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。

  μ=γP

  式中,P是角动量矩,γ是磁旋比,它是自旋核的磁矩和角动量矩之间的比值,因此是各种核的特征常数。

  当自旋核(spin nuclear)处于磁感应强度为的外磁场中时,除自旋外,还会绕B0运动,这种运动情况与陀螺的运动情况十分相像,称为拉莫尔进动(larmor process)。自旋核进动的角速度ω0与外磁场感应强度B0成正比,比例常数即为磁旋比(magnetogyric ratio)γ。式中ν0是进动频率。

  ω0=2πν0=γB0

  原子核在无外磁场中的运动情况如下图,微观磁矩在外磁场中的取向是量子化的(方向量子化),自旋量子数为I的原子核在外磁场作用下只可能有2I+ l个取向,每一个取向都可以 用一个自旋磁盘子数m来表示,mI之间的关系是

  m=I,I-1,I-2…-I

原子核的每一种取向都代表了核在该磁场中的一种能量状态,I值为1/2的核在外磁场作用下 只有两种取向,各相当于m=1/2 m=-1/2,这两种状态之间的能量差ΔE值为

  ΔE=γhB0/2π

  一个核要从低能态跃迁到高能态,必须吸收ΔE的能量。让处于外磁场中的自旋核接受一定频 率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核 吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振。当频率为ν射的射频照射自旋体系时,由于该射频的能量E=hν射,因此核磁共振要求的条件为

  =ΔE(即2πν=γB0) 

目前研究得最多的是1H的核磁共振和13C的核磁共振。1H的核磁共振称为质子磁共振 (Proton Magnetic Resonance),简称 PMR,也表示为1H-NMR13C核磁共振(Carbon- 13 Nuclear Magnetic Resonance)简称 CMR,也表示为13C-NMR[1]
核磁共振核磁共振

核磁共振的副作用

核磁共振成像是利用电子计算机对人体断面进行图像分析诊断的检查方法,它不用X线,而是磁场,其基本原理是人体所含氢原子在强磁场下给予特定的高波后会发生共振现象,产生一种高波数的电磁波。核磁共振正是利用这个性质,采用电子计算机对磁场的变化收集处理并图形化。

  核磁共振成像可以显示脂肪、全身脏器、肌肉、快速流动的血液、骨骼和空气等。对脏器内部结构也能清楚显示。医生可以很好的识别病人体内的肿瘤、炎症、坏死病灶、异常物质沉着、功能阻碍、血液循环阻碍等病变。对于神经系统、胸部、腹部及四肢各种疾病的诊断提供了很大的帮助。

  由于核磁共振是磁场成像,而不是X射线,没有放射性,所以对人体无害,是非常安全的。到目前为止,世界上还没有任何关于医院使用核磁共振机引起危害的报道,也未发现病人基因突变或染色体畸变的发生率有增高。

  当代科学技术的精华核磁共振成像是目前全球公认的安全、精确、无创性的疾病诊断手段。

核磁共振与CT的区别及优缺点

核磁共振与CT相比,它具有无放射线损害,无骨性伪影,能多方面,多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。几乎适用于全身各系统的不同疾病,如肿瘤,炎症,创伤,退行性病变以及各种先天性疾病的检查。对颅脑,脊椎和脊髓病的显示优于CT。它可不用血管造影剂,即显示血管的结构,故对血管,肿块,淋巴结和血管结构之间的相互鉴别,有其独到之处。它还有高于CT数倍的软组织分辨能力,敏感地检出组织成份中水含量的变化,因而常比CT更有效和更早地发现病变。MRI能清楚,全面地显示心腔,心肌,心包及心内其它细小结构,是诊断各种心脏病以及心功能检查的可靠方法。

 

特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭