核磁共振原理
核磁共振指处于静磁场中的核自旋体系,当其拉莫尔进动频率与作用于该体系的射频场频率相等时,所发生的吸收电磁波的现象。带正电荷的原子核自转时具有磁性,它在磁场的赤道平面因受到力矩作用而发生偏转,其结果是核磁矩绕着磁场方向转动,这就是拉莫尔进动(或拉莫尔旋进)。由于核磁矩有与磁场取向倾于平行的规律,经过一定时间,自旋核不再受到力矩的作用,拉莫尔进动也就停止。如在垂直磁场的方向上加进一个与进动频率相同的射频场,核磁矩便会离开平衡位置,拉莫尔进动又重新开始。核“自转”的速度是不变的,只要磁场强度不变,拉莫尔频率自始至终也不会改变。某一种磁核的磁矩在磁场中可取顺磁场方向(属于低能态),也可取逆磁场方向(属于高能态)。如果在垂直于磁场的方向加进一个射频场,当射频场的频率与原子核的拉莫尔频率相等时,处于低能态的核子便吸收射频能,从低能态跃迁到高能态,此为“核磁共振”现象。当射频中断时,原子核就把吸收的能量释放出来,释放的强度是它们各自特征性的标志,即其正常(健康)状态的一种印记。根据这一原理研制的“核磁共振扫描”(简称NMR),是一种新型的断层显像技术,可用于许多物体结构的测定,如化合物结构高分子化合物结晶度,高分子链立体构型成分,药物成分,生物大分子的结构,药物与生物大分子、细胞受体之间的相互作用,生物活体组织含水量,癌症诊断,人体NMR断层扫描(NMR-CT)等。
核磁共振碳谱
只对某一特定频率的射频场敏感。但是处于分子结构中的原子核,由于分子中电子云分布等因素的影响,实际感受到的外磁场强度往往会发生一定程度的变化,而且处于分子结构中不同位置的原子核,所感受到的外加磁场的强度也各不相同,这种分子中电子云对外加磁场强度的影响,会导致分子中不同位置原子核对不同频率的射频场敏感,从而导致核磁共振信号的差异,这种差异便是通过核磁共振解析分子结构的基础。原子核附近化学键和电子云的分布状况称为该原子核的化学环境,由于化学环境影响导致的核磁共振信号频率位置的变化称为该原子核的化学位移。
耦合常数是化学位移之外核磁共振谱提供的的另一个重要信息,所谓耦合指的是临近原子核自旋角动量的相互影响,这种原子核自旋角动量的相互作用会改变原子核自旋在外磁场中进动的能级分布状况,造成能级的裂分,进而造成NMR谱图中的信号峰形状发生变化,通过解析这些峰形的变化,可以推测出分子结构中各原子之间的连接关系。例如在氢谱中,d 表示二重峰 dd 表示双二重峰 t 表示三重峰 m 表示多重峰,都是由于耦合作用产生的。
最后,信号强度是核磁共振谱的第三个重要信息,处于相同化学环境的原子核在核磁共振谱中会显示为同一个信号峰,通过解析信号峰的强度可以获知这些原子核的数量,从而为分子结构的解析提供重要信息。表征信号峰强度的是信号峰的曲线下面积积分,这一信息对于1H-NMR谱尤为重要,而对于13C-NMR谱而言,由于峰强度和原子核数量的对应关系并不显著,因而峰强度并不非常重要。