目前,二叉树的遍历在当代的应用可谓是越来越广泛,二叉树的遍历是值得我们好好学习的,现在我们就深入了解二叉树的遍历。
遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点,使得每个结点仅被访问一次。
这里提到的“访问”是指对结点施行某种操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访问不破坏它原来的数据结构。在本书中,我们规定访问是输出结点信息data,且以二叉链表作为二叉树的存贮结构。
由于二叉树是一种非线性结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序列。 令L,R,D分别代表二叉树的左子树、右子树、根结点,则遍历二叉树有6种规则:DLR、DRL、LDR、LRD、RDL、RKD。若规定二叉树中必须先左后右(左右顺序不能颠倒),则只有DLR、LDR、LRD三种遍历规则。DLR称为前根遍历(或前序遍历、先序遍历、先根遍历),LDR称为中根遍历(或中序遍历),LRD称为后根遍历(或后序遍历)。
遍历算法
1.中序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
(1)遍历左子树;
(2)访问根结点;
(3)遍历右子树。
2.先序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
(1) 访问根结点;
(2) 遍历左子树;
(3) 遍历右子树。
3.后序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
(1)遍历左子树;
(2)遍历右子树;
(3)访问根结点。
4.中序遍历的算法实现
用二叉链表做为存储结构,中序遍历算法可描述为:
void InOrder(BinTree T)
{ //算法里①~⑥是为了说明执行过程加入的标号
① if(T) { // 如果二叉树非空
② InOrder(T->lchild);
③ printf("%c",T->data); // 访问结点
④ InOrder(T->rchild);
⑤ }
⑥ } // InOrder
综上所述,本文已为讲解二叉树的遍历,相信大家对二叉树的遍历的认识越来越深入,希望本文能对各位读者有比较大的参考价值
浏览过本文<二叉树的遍历>的人也浏览了
基础知识
http://baike.cntronics.com/abc?page=88
基础知识
http://baike.cntronics.com/abc/?page=127
二叉树排序
http://baike.cntronics.com/abc/2048