你的位置:首页 > 知识课堂 > 正文

高精度算法

发布时间:2013-08-29

目前,高精度算法在当代的应用可谓是越来越广泛,高精度算法是值得我们好好学习的,现在我们就深入了解高精度算法。
高精度算法
高精度算法

高精度算法,属于处理大数字的数学计算方法。在一般的科学计算中,会经常算到小数点后几百位或者更多,当然也可能是几千亿几百亿的大数字。一般这类数字我们统称为高精度数,高精度算法是用计算机对于超大数据的一种模拟加,减,乘,除,乘方,阶乘,开方等运算。对于非常庞大的数字无法在计算机中正常存储,于是,将这个数字拆开,拆成一位一位的,或者是四位四位的存储到一个数组中, 用一个数组去表示一个数字,这样这个数字就被称谓是高精度数。高精度算法就是能处理高精度数各种运算的算法。

简介

对高精度数,也要像常用的数那样做加减乘除以及乘方的运算,但又因其特殊所以就有了高精度算法:

代码

高精度算法
高精度算法

Pascal代码
下面提供了Pascal的高精度加法, 高精度乘以单精度, 高精度乘以高精度的代码, 其他版本请各位大牛添加进来吧!
Pascal代码
Pascal代码如下(非完整); k为预定进制,加大进制以提高速度。
Procedure HPule(a, b: Arr; Var c:Arr); //高精度加法
Var
i: Integer;
Begin
FillChar(c, SizeOf(c), 0);
For i:= 1 To Maxn-1 Do Begin
c[i]:= c[i] + a[i] + b[i];
c[i + 1] := c[i] Div k;
c[i] := c[i] Mod k;
End;
End;
Procedure HPule(a: Arr; b:Integer; Var c:Arr); //高精度乘以单精度
Var
i: Integer;
Begin
FillChar(c, SizeOf(c), 0);
For i:= 1 To Maxn-1 Do Begin
c[i] := c[i] + a[i] * b;
c[i+1]:= c[i] Div k;
c[i]:= c[i] Mod k
End;
End;
Procedure HPule(a, b: Arr; ; Var c:Arr); //高精度乘以高精度
Var
i, j: Integer;
Begin
FillChar(c, SizeOf(c), 0);
For i:= 1 To Maxn Do
For j := 1 To Maxn Begin
c[i+j-1] := c[i+j-1] + a[i] * b[j];
c[i+j]:=c[i+j]+( c[i+j-1] Div k);
c[i+j-1]:= c[i+j-1] Mod k
End;
End;
Ps:为了防止百度错误识别, 过程中有不少符号是全角状态输入.
高精度加法
var
a,b,c:array[1..201] of 0..9;
n:string;
lena,lenb,lenc,i,x:integer;
begin
write('Input augend:'); readln(n);lena:=length(n);
for i:=1 to lena do a[lena-i+1]:=ord(n)-ord('0');{加数放入a数组}
write('Input addend:'); readln(n); lenb:=length(n);
for i:=1 to lenb do b[lenb-i+1]:=ord(n)-ord('0');{被加数放入b数组}
i:=1;
while (i<=lena) or(i<=lenb) do
begin
x := a + b + x div 10; {两数相加,然后加前次进位}
c := x mod 10; {保存第i位的值}
i := i + 1
end;
if x>=10 {处理最高进位}
then begin lenc:=i; c:=1 end
else lenc:=i-1;
for i:=lenc downto 1 do write(c); writeln {输出结果}
end.
高精度乘法(低对高)
const max=100; n=20;
var a:array[1..max]of 0..9;
i,j,k;x:integer;
begin
k:=1; a[k]:=1;{a=1}
for i:=2 to n do{a*2*3….*n}
begin
x:=0;{进位初始化}
for j:=1 do k do{a=a*i}
begin
x:=x+a[j]*i; a[j]:=x mod 10;x:=x div 10
end;
while x>0 do {处理最高位的进位}
begin
k:=k+1;a[k]:=x mod 10;x:=x div 10
end
end;
writeln;
for i:=k dowento 1 write(a){输出a}
end.
高精度乘法(高对高)
var a,b,c:array[1..200] of 0..9;
n1,n2:string; lena,lenb,lenc,i,j,x:integer;
begin
write('Input multiplier:'); readln(n1);
write('Input multiplicand:'); readln(n2);
lena:=length(n1); lenb:=length(n2);
for i:=1 to lena do a[lena-i+1]:=ord(n1)-ord('0');
for i:=1 to lenb do b[lenb-i+1]:=ord(n2)-ord('0');
for i:=1 to lena do
begin
x:=0;
for j:=1 to lenb do{对乘数的每一位进行处理}
begin
x := a*b[j]+x div 10+c;{当前乘积+上次乘积进位+原数}
c:=x mod 10;
end;
c:= x div 10;{进位}
end;
lenc:=i+j;
while (c[lenc]=0) and (lenc>1) do dec(lenc); {最高位的0不输出}
for i:=lenc downto 1 do write(c); writeln
end.
高精度除法
算法一 procedure high_devide(a,b:hp; var c,d:hp);
var
i,len:integer;
begin
fillchar(c,sizeof(c),0);
fillchar(d,sizeof(d),0);
len:=a[0];d[0]:=1;
for i:=len downto 1 do begin
multiply(d,10,d);
d[1]:=a[i];
while(compare(d,b)>=0) do {即d>=b}
begin
Subtract(d,b,d);
inc(c[i]);
end;
end;
while(len>1)and(c.s[len]=0) do dec(len);
c.len:=len;
end;
算法二
fillchar(s,sizeof(s),0);{小数部分初始化}
fillchar(posi,sizeof(posi),0); {小数值的位序列初始化}
len←0;st←0; {小数部分的指针和循环节的首指针初始化}
read(x,y);{读被除数和除数}
write(x div y);{输出整数部分}
x←x mod y;{计算x除以y的余数}
if x=0 then exit;{若x除尽y,则成功退出}
while lenlimit do{若小数位未达到上限,则循环}
begin
inc(len);posix←len;{记下当前位小数,计算下一位小数和余数}
x←x*10; slen←x div y;x←x mod y;
if posix0 {若下一位余数先前出现过,则先前出现的位置为循环节的开始}
then begin st←posix; break;end;{then}
if x=0 then break; {若除尽,则成功退出}
end;{while}
if len=0
then begin writeln;exit;end;{若小数部分的位数为0,则成功退出;否则输出小数点}
write(.);
if st=0 {若无循环节,则输出小数部分,否则输出循环节前的小数和循环节}
then for i←1 to len do write(s)
else begin
for i←1 to st-1 do write(s);
write();
for i←st to len do write(s);
write();
end;{else}

综上所述,本文已为讲解高精度算法,相信大家对高精度算法的认识越来越深入,希望本文能对各位读者有比较大的参考价值

浏览过本文<高精度算法>的人也浏览了   

基础知识
http://baike.cntronics.com/abc?page=100


高精度算法
http://baike.cntronics.com/abc/1755


基础知识
http://baike.cntronics.com/abc?page=167




特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭