光栅尺工作原理
常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带,从而便形成了我们所见到的摩尔条纹。
光栅尺工作原理
以透射光栅为例,当指示光栅上的线纹和标尺光栅上的线纹之间形成一个小角度θ,并且两个光栅尺刻面相对平行放置时,在光源的照射下,位于几乎垂直的栅纹上,形成明暗相间的条纹。这种条纹称为“莫尔条纹”。严格地说,莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直。莫尔条纹中两条亮纹或两条暗纹之间的距离称为莫尔条纹的宽度,以W表示。W=ω /2* sin(θ/2)=ω /θ 。
莫尔条纹具有以下特征:
(1)莫尔条纹的变化规律
两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离。由于光的衍射与干涉作用,莫尔条纹的变化规律近似正(余)弦函数,变化周期数与光栅相对位移的栅距数同步。
(2)放大作用
在两光栅栅线夹角较小的情况下,莫尔条纹宽度W和光栅栅距ω、栅线角θ之间有下列关系。式中,θ的单位为rad,W的单位为mm。由于倾角很小,sinθ很小,则
W=ω /θ
若ω =0.01mm,θ=0.01rad,则上式可得W=1,即光栅放大了100倍。
光栅尺工作原理
莫尔条纹是由若干光栅条纹共用形成,例如每毫米100线的光栅,10mm宽度的莫尔条纹就有1000条线纹,这样栅距之间的相邻误差就被平均化了,消除了由于栅距不均匀、断裂等造成的误差。
综上所述,本文已为讲解光栅尺工作原理,相信大家对光栅尺工作原理的认识越来越深入,希望本文能对各位读者有比较大的参考价值。
浏览过本文<光栅尺工作原理>的人也浏览了
编码器工作原理
http://baike.cntronics.com/abc/1331
高度计的基本内容
http://baike.cntronics.com/abc/5786
什么是光栅尺?
http://baike.cntronics.com/abc/6073