开漏输出
目前,开漏输出在当代的应用可谓是越来越广泛,开漏输出是值得我们好好学习的。现在我们就深入了解开漏输出,希望本文能对各位读者有比
较大的参考价值。
开漏输出就是漏极开路输出,跟集电极开路十分相似,工作原理也是一样的。不同的是,使用的场效应管而已。使用时要加上拉电阻。
参考:集电极开路输出(OC)、漏极开路输出(OD)、推挽输出。
为什么要用开漏输出?
IC设计成开漏输出有什么好处呢?和不是开漏结构的都有什么特点?74LS00和74LS03 这两个运用起来有什么区别?
IC设计成开漏输出方便“线与”,比如说两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态电平)用同一条导线输送出去。
开漏结构就是一个没有上拉的输出。
74LS00-普通型四2输入与非门;74LS03-OC(集电极开路)型四2输入与非门。
什么叫开漏输出
开漏输出
开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。它可以吸收很大的电流,但是不能向外输出电流。所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。
OC门开漏输出和OD门开漏输出都是为了同一个目的,都是为了实现逻辑器件的线与逻辑,当然选用不同的外接电阻也可以实现外围驱动能力的增加。当你应用此电路的时候,要注意应用时要加上拉电阻接电源,这样才能保证逻辑的正确,在电阻上要根据逻辑器件的扇入扇出系数来确定,但一般mos电路带载同样的mos 电路能力比较强,所以电阻通常可以选择2.2k,4.9k这样一些常用的。 推挽输出与开漏输出的区别 推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行.
适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内). 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止. 要实现 线与 需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。输出既可以向负载灌电流,也可以从负载抽取电流。
所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。
一、开漏形式的电路有以下几个特点:
1.利用外部电路的驱动能力,减少IC内部的驱动。 或驱动比芯片电源电压高的负载.
2.可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。如果作为图腾输出必须接上拉电阻。接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。如果要求速度高电阻选择要小,功耗会大。所以负载电阻的选择要兼顾功耗和速度。
3.可以利用改变上拉电源的电压,改变传输电平。例如加上上拉电阻就可以提供TTL/CMOS电平输出等。
4.开漏Pin不连接外部的上拉电阻,则只能输出低电平。一般来说,开漏是用来连接不同电平的器件,匹配电平用的。
5.正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DRAIN了。这种输出的主要目的有两个:电平转换和线与。
6.由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。这样你就可以进行任意电平的转换了。
7.线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。(而正常的CMOS输出级,如果出现一个输出为高另外一个为低时,等于电源短路。)
8.OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。
二.什么是线或逻辑与线与逻辑?
在一个结点(线)上, 连接一个上拉电阻到电源 VCC 或 VDD 和 n 个 NPN 或 NMOS 晶体管的集电极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体管饱和, 这个结点(线)就被拉到地线电平上. 因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS), 晶体管就会饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑. 如果这个结点后面加一个反相器, 就是或 OR 逻辑. 注:个人理解:线与,接上拉电阻至电源。(~A)&(~B)=~(A+B),由公式较容易理解线与此概念的由来 ; 如果用下拉电阻和 PNP 或 PMOS 管就可以构成与非 NAND 逻辑, 或用负逻辑关系转换与/或逻辑. 注:线或,接下拉电阻至地。(~A)+(~B)=~(AB); 这些晶体管常常是一些逻辑电路的集电极开路 OC 或源极开路 OD 输出端. 这种逻辑通常称为线与/线或逻辑, 当你看到一些芯片的 OC 或 OD 输出端连在一起, 而有一个上拉电阻时, 这就是线或/线与了, 但有时上拉电阻做在芯片的输入端内. 顺便提示如果不是 OC 或 OD 芯片的输出端是不可以连在一起的, 总线 BUS 上的双向输出端连在一起是有管理的, 同时只能有一个作输出, 而其他是高阻态只能输入.
开漏输出
三.什么是推挽结构一般是指两个三极管分别受两互补信号的控制
总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路 .如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem- pole)输出电路(可惜,图无法贴上)。当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。供你参考。推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小 效率高。
综上所述,本文已为讲解开漏形式的电路的特点、“什么是线或逻辑与线与逻辑?”、“什么是推挽结构一般是指两个三极管分别受两互补信号的控制”等等,相信大家对开漏输出的认识越来越深入,希望本文能对各位读者有比较大的参考价值。
浏览过本文<开漏输出>文的人也浏览了
推挽输出及推挽输出与开漏输出的区别
http://baike.cntronics.com/abc/1306
吸电流、拉电流、灌电流、上下拉电阻、高阻态分析
http://baike.cntronics.com/abc/431
Diodes推出新型电源开关,支持高达2.5A连续输出电流
http://www.cntronics.com/connect-art/80020847