你的位置:首页 > 知识课堂 > 正文

高频变压器设计

发布时间:1970-01-01

高频变压器设计步骤:

———领料———工程图及作业指导书确认———一次侧绕线———一次侧绝缘———二次侧绕线———二次侧绝缘———焊锡——— 铁粉芯研磨———铁粉芯组装———加工铜箔———半成品测试T1———电感值测试———漏电感值测试———直流电阻测试———相位测试———圈数比测试 ———高压绝缘测试———凡立水处理(真空含浸) ———阴乾处理———烤箱烤乾处理———加包外围胶带———整脚处理———切脚处理———贴危险标签及料号标签———外观处理———成品电气测试T——电感值测试——漏电感值测试——相位测试——圈数比测试——高压绝缘测———QA至终检区——尺寸外观检查电气测试装箱———入库

2.低频变压器制作流程图.

———领料———工程图确认及作业指导书———一次侧绕线———一次侧绝缘———二次侧绕线———二次侧绝缘———引线组装及焊锡———半成品断线测试T1 ———线架组装及矽钢片组装———矽钢片补片敲平———铁带组装———半成品测试T2电压测试电流测试高压绝缘测试———凡立水处理(真空含浸) ———阴乾处理———烤箱烤乾处理———加包外围胶带———整脚处理———切脚处理———贴危险标签及料号标签———外观处理———成品电气测试T3电压测试电流测试高压绝缘测试———QA至终检区--—尺寸外观检查电气测试装箱———入库

3.圆盘制作流程图.

———领料———工程图确认及作业指导书———铁芯加工———固定铁芯———绕线———固定———上线盘———刷凡立水———阴乾———剪线 ———剥漆———上套管,端子———焊锡———外观———贴标签———包装———入库

4.ADAPTOR制作流程图.

———领料———工作指令及作业指导书确认———插件———焊锡———切脚———补焊———焊DC CORD ———剪DC线头———清理PCB板———折PCB板———PCB板测试T1 ———焊次级至PCB ———焊初级至AC PIN ———半成品电气测试T2 ———组装CASE ———超音波封壳———成品电气测试T3

———贴铭板———尺寸外观检查———装箱

———FQC检验

———入库

5. T CORE线圈制作流程图.

———领料———工程图确认及作业指导书———裁线———钩线———上底座———压脚.整脚———焊锡———半成品测试T1 ———含浸处理———阴乾处理———烘烤处理———冷却处理———剪脚———外观———成品测试T2 ———包装———FQC检验

———入库

6. R CORE线圈制作流程图.

———领料———工程图确认及作业指导书———卷线———焊锡———上铁芯(点A.B胶) ———烤胶———上套管(或含浸处理) ———烘烤套管(或烤乾凡立水) ———切脚———外观———测试T1 ———包装———FQC检验

———入库

7. DR CORE线圈制作流程图.

———领料———工程图确认及作业指导书———绕线———理线压脚———焊锡———上套管———烘烤套管———切脚———外观———测试T1 ———包装———FQC检验

———入库

高频变压器设计

高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。在高频链的硬件电路设计中,高频变压器是重要的一环。设计高频变压器首先应该从磁芯开始。开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。磁芯矫顽力低,磁滞面积小,则铁耗也少。高的电阻率,则涡流小,铁耗小。铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。

高频变压器的设计通常采用两种方法[3]:

第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;

第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:

 1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

 2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。

单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。在 1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。高频变压器是开关电源中进行能量储存与传输的重要部件,单片开关电源中高频变压器性能的优劣,不仅对电源效率有较大的影响,而且直接关系到电源的其它技术指标和电磁兼容性(EMC)。为此,一个高效率高频变压器应具备直流损耗和交流损耗低、漏感小、绕组本身的分布电容及各绕组之间的耦合电容要小等条件。高频变压器的直流损耗是由线圈的铜损耗造成的。为提高效率,应尽量选择较粗的导线,并取电流密度J=4~10A/mm

2。高频变压器的交流损耗是由高频电流的趋肤效应以及磁芯的损耗引起的。高频电流通过导线时总是趋向于从表面流过,这会使导线的有效流通面积减小,并使导线的交流等效阻抗远高于铜电阻。高频电流对导体的穿透能力与开关频率的平方根成反比,为减小交流铜阻抗,导线半径不得超过高频电流可达深度的2倍。可供选用的导线线径与开关频率的关系曲线

举例说明,当f=100kHz时,导线直径理论上可取φ0.4mm。但为了减小趋肤效应,实际可用更细的导线多股并绕,而不用一根粗导线绕制。在设计高频变压器时必须把漏感减至最小。因为漏感愈大,产生的尖峰电压幅度愈高,漏极钳位电路的损耗就愈大,这必然导致电源效率降低。对于一个符合绝缘及安全性标准的高频变压器,其漏感量应为次级开路时初级电感量的1%~3%。要想达到1%以下的指标,在制造工艺上将难于实现。

减小漏感时可采取以下措施:

减小初级绕组的匝数NP; 增大绕组的宽度(例如选EE型磁芯,以增加骨架宽度b); 增加绕组的高、宽比; 减小各绕组之间的绝缘层; 增加绕组之间的耦合程度。电源高频变压器的设计方法设计高频变压器是电源设计过程中的难点,下面以反馈式电流不连续电源高频变压器为例,介绍一种电源高频变压器的设计方法。

设计目标:

电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。

设计步骤:

1、计算高频变压器初级峰值电流Ipp

2、求最小工作周期系数Dmin

3、计算高频变压器的初级电感值Lp

 4、计算出绕组面积Aw和铁心有效面积Ae的乘积Aw*Ae,选择铁心尺寸。

 5、计算空气间隙长度Lg

6、计算变压器初级线圈Np

7、计算变压器次级线圈Ns

高频变压器:整流、变压在传统的高频变压器设计中,由于磁心材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化,高频化和高功率比已成为一个永恒的研究方向和发展趋势。

因此,研究使用频率更高的电源变压器是降低电源系统体积,提高电源输出功率比的关键因素。

作为开关电源最主要的组成部分,高频变压器相对于传统的工频变压器有以下优点:

利用铁氧体材料制成的高频变压器具有转换效率高、体积小巧的特点;

而传统的工频变压器工作在50Hz下,输出相同功率时需要较大的截面积而导致变压器体积庞大,不利于电源的小型化设计,而且电源转换效率也低于开关电源。

电脑使用的开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电。

要采购变压器么,点这里了解一下价格!
特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭