晶体二极管具有什么特性 二极管的核心是PN结,PN结具有单向导电性,这是二极管的主要特性。 二极管的导电性能,由加在二极管两端的电压和流过二极管的电流决定,这两者之间的关系称为二极管的伏安特性。用于定量描述这两者关系的曲线称为伏安特性曲线,如图1-6所示。 由图1一6可见,二极管的导电特性可分为正向特性和反向特性两部分。
续流二极管在整流电路中的作用
续流二极管主要起到为较大的感应电压提供一个由感应电压和续流二极管共同组成的泄放回路,使得感应电压在回路中以电流方式消耗掉,从而保护电路中元件不被感应电压损坏。较大的感应电压一般是由于感性负载(例如继电器线圈)失电引起的。在电路中一般选择快速恢复二极管或者是肖特基二极管作为续流二极管。特别需要注意的是续流二极管的极性不能接反,否则不仅起不到保护作用,还会形成短路。
1.正向特性
指二极管加上正向电压时电流和电压的关系。
当二极管两端所加的正向电压由零逐渐增大时,开始时正向电流很小,几乎为零,二极管呈现很大的电阻,这个区域称为死区。硅二极管死区电压约为0. 5V;锗二极管死区电压约0. 2V。在实际使用中,当二极管正偏电压小于死区电压时,视为其正向电流为零的状态。外加电压超过死区电压后,正向电流开始出现,直到等于导通电压,正向电流迅速增加,这时二极管处于正向导通状态。硅管的导通电压为0.6-0. 7V,锗管的导通电压为0.2-0.3V.
2.反向特性
指二极管加反向电压时电流和电压的关系。
当给二极管加反向电压时,形成的反向电流很小,而且在很大范围内基本不随反向电压的变化而变化,故这个区域称为反向截止区。反向截止时通过的电流称为反向饱和电流,通常硅管有几微安到几十微安;锗管有几十微安到几百微安。这个电流是衡量二极管质量优劣的重要参数,其值越小,二极管质量越好。一般情况下可以忽略反向饱和电流,认为二极管反向不导通。
如果反向电压不断增大到一定值时,反向电流会突然增大,这种现象称为反向击穿,这时二极管两端所加的电压称为反向击穿电压。普通二极管正常使用时,是不允许出现这种现象的。
综上所述,二极管具有加一定的正向电压导通。加反向电压截止的特性。这种特性称为单向导电性。
晶体二极管及其基本应用
应用实例1:半导体变流技术
变流技术是一种电力变换的技术。通常所说的“变流”是指“交流电变直流电,直流电变交流电”。例如,常见的充电器,就使用了交流电变直流电的变流技术。
图5-3所示是三相半波不可控整流电路,任何时刻只有瞬时阳极电压最高的一相管导通,按电源的相序,每管轮流导通120°。
应用实例2:开关电源
开关电源中的应用电路如图5-4所示,VT1和开关变压器组成间歇振荡器,充电器加电后,220V市电经VD1半波整流后在VT1的C极上形成一个300V左右的直流电压,经过变压器初级加到VT1的C极,同时该电压还经启动电阻R2为VT1的B极提供一个偏置电压。由于正反馈作用,VT1的Ic迅速上升而饱和,在VT,进入饱和期间,开关变压器次级绕组产生的感应电压使VD2导通,向负载输出一个约9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经VD3整流、C2滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管VD2的稳压值,VD2便导通,此负极性整流电压便加在VT1的B极,使其迅速截止。VT1的截止时间与其输出电压呈反比。VD2的导通/截止直接受电网电压和负载的影响,电网电压越低或负载电流越大,VD2的导通时间越短,VT1的导通时间越长;反之,电网电压越高或负载电流越小,VD3的整流电压越高,VT1的导通时间越长,VT1的导通时间越短。
应用实例3:双向电力电子开关
双向电力电子开关应用电路如图5-5所示,在斩控式交流调压电路中电力电子开关必须满足:开关是全控的,可以控制导通也可以控制关断,所以必须采用全控型器件。电力电子开关必须是双向导电的,因此单个器件是无法满足要求的,必须用多个器件组合而成。开关频率较高,一般都在90kHz以上。
只用了一个可控元件,同时由4个二极管组成桥式连接,使得无论外电路电流方向如何 总是流入晶体管的集电极。